Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 864: 160992, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535470

RESUMO

Understanding the relationship between water and production within and across agroecosystems is essential for addressing several agricultural challenges of the 21st century: providing food, fuel, and fiber to a growing human population, reducing the environmental impacts of agricultural production, and adapting food systems to climate change. Of all human activities, agriculture has the highest demand for water globally. Therefore, increasing water use efficiency (WUE), or producing 'more crop per drop', has been a long-term goal of agricultural management, engineering, and crop breeding. WUE is a widely used term applied across a diverse array of spatial scales, spanning from the leaf to the globe, and over temporal scales ranging from seconds to months to years. The measurement, interpretation, and complexity of WUE varies enormously across these spatial and temporal scales, challenging comparisons within and across diverse agroecosystems. The goals of this review are to evaluate common indicators of WUE in agricultural production and assess tradeoffs when applying these indicators within and across agroecosystems amidst a changing climate. We examine three questions: (1) what are the uses and limitations of common WUE indicators, (2) how can WUE indicators be applied within and across agroecosystems, and (3) how can WUE indicators help adapt agriculture to climate change? Addressing these agricultural challenges will require land managers, producers, policy makers, researchers, and consumers to evaluate costs and benefits of practices and innovations of water use in agricultural production. Clearly defining and interpreting WUE in the most scale-appropriate way is crucial for advancing agroecosystem sustainability.

3.
Ecol Appl ; 27(5): 1677-1693, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28423459

RESUMO

Frequency and severity of extreme climatic events are forecast to increase in the 21st century. Predicting how managed ecosystems may respond to climatic extremes is intensified by uncertainty associated with knowing when, where, and how long effects of extreme events will be manifest in an ecosystem. In water-limited ecosystems with high inter-annual variability in rainfall, it is important to be able to distinguish responses that result from seasonal fluctuations in rainfall from long-term directional increases or decreases in precipitation. A tool that successfully distinguishes seasonal from directional biomass responses would allow land managers to make informed decisions about prioritizing mitigation strategies, allocating human resource monitoring efforts, and mobilizing resources to withstand extreme climatic events. We leveraged long-term observations (2000-2013) of quadrat-level plant biomass at multiple locations across a semiarid landscape in southern New Mexico to verify the use of Normalized Difference Vegetation Index (NDVI) time series derived from 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) data as a proxy for changes in aboveground productivity. This period encompassed years of sustained drought (2000-2003) and record-breaking high rainfall (2006 and 2008) followed by subsequent drought years (2011 through 2013) that resulted in a restructuring of plant community composition in some locations. Our objective was to decompose vegetation patterns derived from MODIS NDVI over this period into contributions from (1) the long-term trend, (2) seasonal cycle, and (3) unexplained variance using the Breaks for Additive Season and Trend (BFAST) model. BFAST breakpoints in NDVI trend and seasonal components were verified with field-estimated biomass at 15 sites that differed in species richness, vegetation cover, and soil properties. We found that 34 of 45 breaks in NDVI trend reflected large changes in mean biomass and 16 of 19 seasonal breaks accompanied changes in the contribution to biomass by perennial and/or annual grasses. The BFAST method using satellite imagery proved useful for detecting previously reported ground-based changes in vegetation in this arid ecosystem. We demonstrate that time series analysis of NDVI data holds potential for monitoring landscape condition in arid ecosystems at the large spatial scales needed to differentiate responses to a changing climate from responses to seasonal variability in rainfall.


Assuntos
Biomassa , Embriófitas/fisiologia , Pradaria , Imagens de Satélites , Biota , New Mexico , Estações do Ano
4.
Ecology ; 95(5): 1141-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000746

RESUMO

Identifying factors that may be responsible for regulating the size of animal populations is a cornerstone in understanding population ecology. The main factors that are thought to influence population size are either resources (bottom-up), or predation (top-down), or interspecific competition (parallel). However, there are highly variable and often contradictory results regarding their relative strengths and influence. These varied results are often interpreted as indicating "shifting control" among the three main factors, or a complex, nonlinear relationship among environmental variables, resource availability, predation, and competition. We argue here that there is a "missing link" in our understanding of predator-prey dynamics. We explore whether the landscape-of-fear model can help us clarify the inconsistencies and increase our understanding of the roles, extent, and possible interactions of top-down, bottom-up, and parallel factors on prey population abundance. We propose two main predictions derived from the landscape-of-fear model: (1) for a single species, we suggest that as the makeup of the landscape of fear changes from relatively safe to relatively risky, bottom-up impacts switch from strong to weak as top-down impacts go from weak to strong; (2) for two or more species, interspecific competitive interactions produce various combinations of bottom-up, top-down, and parallel impacts depending on the dominant competing species and whether the landscapes of fear are shared or distinctive among competing species. We contend that these predictions could successfully explain many of the complex and contradictory results of current research. We test some of these predictions based on long-term data for small mammals from the Chihuahuan Desert in the United States, and Mexico. We conclude that the landscape-of-fear model does provide reasonable explanations for many of the reported studies and should be tested further to better understand the effects of bottom-up, top-down, and parallel factors on population dynamics.


Assuntos
Dipodomys/fisiologia , Medo , Modelos Biológicos , Comportamento Predatório , Animais , Ecossistema , Plantas , Densidade Demográfica
5.
Oecologia ; 174(4): 1323-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24263235

RESUMO

Multi-year climatic periods are expected to increase with global change, yet long-term data are often insufficient to document factors leading to ecological responses. We used a suite of long-term datasets (1993-2010) to examine the processes underlying different relationships between aboveground net primary production (ANPP) and precipitation in wet and dry rainfall periods in shrublands and grasslands in the Chihuahuan Desert. We hypothesized that trends in ANPP can be explained by different processes associated with their dominant grasses [Bouteloua eriopoda (grasslands); Sporobolus flexuosus (shrublands)] and with ecosystem properties that influence soil water dynamics with feedbacks to ANPP. We compared datasets on recruitment and growth for 7 years with no trend in precipitation followed by a 4-year drought and 5 consecutive wet years. We integrated these data in a simulation model to examine the importance of positive feedbacks. In grasslands, ANPP was linearly related to precipitation regardless of rainfall period, primarily as a result of stolon recruitment by B. eriopoda. A lag in responses suggests the importance of legacies associated with stolon density. In shrublands, ANPP was only related to rainfall in the wet period when it increased nonlinearly as the number of wet years increased. Seed availability increased in the first wet year, and seedling establishment occurred 2-4 years later. Increases in biomass, litter and simulated transpiration beginning in the third year corresponded with increases in ANPP. Understanding the processes underlying ecosystem dynamics in multi-year dry or wet periods is expected to improve predictions under directional increases or decreases in rainfall.


Assuntos
Clima , Secas , Poaceae/crescimento & desenvolvimento , Chuva , Biomassa , Modelos Teóricos , New Mexico , Estações do Ano , Sementes/crescimento & desenvolvimento , Solo , Água
6.
Ecol Appl ; 24(6): 1421-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29160664

RESUMO

Tree and shrub abundance has increased in many grasslands causing changes in ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution. However, with regard to spatial patterns of shrub proliferation, little is known about how they are influenced by grazing or the extent to which they are influenced by intraspecific interactions. We addressed these questions by quantifying changes in the spatial distribution of Prosopis velutina (mesquite) shrubs over 74 years on grazed and protected grasslands. Livestock are effective agents of mesquite dispersal and mesquite plants have lateral roots extending well beyond the canopy. We therefore hypothesized that mesquite distributions would be random on grazed areas mainly due to cattle dispersion and clustered on protected areas due to decreased dispersal and interspecific interference with grasses; and that clustered or random distributions at early stages of encroachment would give way to regular distributions as stands matured and density-dependent interactions intensified. Assessments in 1932, 1948, and 2006 supported the first hypothesis, but we found no support for the second. In fact, clustering intensified with time on the protected area and the pattern remained random on the grazed site. Although shrub density increased on both areas between 1932 and 2006, we saw no progression toward a regular distribution indicative of density-dependent interactions. We propose that processes related to seed dispersal, grass­shrub seedling interactions, and hydrological constraints on shrub size interact to determine vegetation structure in grassland-to-shrubland state changes with implications for ecosystem function and management.


Assuntos
Pradaria , Herbivoria/fisiologia , Animais , Biodiversidade , Gado , Modelos Biológicos
7.
Ecol Appl ; 22(3): 909-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22645820

RESUMO

Proliferation of woody plants in grasslands and savannas is a persistent problem globally. This widely observed shift from grass to shrub dominance in rangelands worldwide has been heterogeneous in space and time largely due to cross-scale interactions among soils, climate, and land-use history. Our objective was to use a hierarchical framework to evaluate the relationship between spatial patterns in soil properties and long-term shrub dynamics in the northern Chihuahuan Desert of New Mexico, USA. To meet this objective, shrub patch dynamics from 1937 to 2008 were characterized at patch and landscape scales using historical imagery and a recent digital soils map. Effects of annual precipitation on patch dynamics on two soils revealed strong correlations between shrub growth on deep sandy soils and above-average rainfall years (r = 0.671, P = 0.034) and shrub colonization and below-average rainfall years on shallow sandy soils (r = 0.705, P = 0.023). Patch-level analysis of demographic patterns revealed significant differences between shrub patches on deep and shallow sandy soils during periods of above- and below-average rainfall. Both deep and shallow sandy soils exhibited low shrub cover in 1937 (1.0% +/- 2.3% and 0.3% +/- 1.3%, respectively [mean +/- SD]) and were characterized by colonization or appearance of new patches until 1960. However, different demographic responses to the cessation of severe drought on the two soils and increased frequency of wet years after 1960 have resulted in very different endpoints. In 2008 a shrubland occupied the deep sandy soils with cover at 19.8% +/- 9.1%, while a shrub-dominated grassland occurred on the shallow sandy soils with cover at 9.3% +/- 7.2%. Present-day shrub vegetation constitutes a shifting mosaic marked by the coexistence of patches at different stages of development. Management implications of this long-term multi-scale assessment of vegetation dynamics support the notion that soil properties may constrain grassland remediation. Such efforts on sandy soils should be focused on sites characterized by near-surface water-holding capacity, as those lacking available water-holding capacity in the shallow root zone pose challenges to grass recovery and survival.


Assuntos
Clima Desértico , Ecossistema , Desenvolvimento Vegetal , Chuva , Solo , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Atividades Humanas , New Mexico , Dióxido de Silício , Fatores de Tempo
8.
Ecol Appl ; 21(5): 1629-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21830707

RESUMO

Desertification is often characterized by the replacement of mesophytic grasses with xerophytic shrubs. Livestock grazing is considered a key driver of shrub encroachment, although most evidence is anecdotal or confounded by other factors. Mapping of velvet mesquite (Prosopis velutina) shrubs in and out of exclosures in 1932, 1948, and 2006 in semiarid grasslands of southeastern Arizona, USA, afforded the opportunity to quantify livestock grazing effects on mesquite proliferation over 74 years in the absence of fire to test the widespread assumption that livestock grazing promotes shrub proliferation. In 1932, shrub cover, density, and aboveground biomass were compared on grazed (12%, 173 plants/ha, 4182 kg/ha) and newly protected areas (8%, 203 plants/ha, 3119 kg/ha). By 1948, cover on both areas increased to 18%; yet, density on the protected area increased 300% (to 620 plants/ha), nearly twice that of the grazed area (325 plants/ha). From 1932 to 1948, differences in recruitment of new plants and growth of existing plants were reflected in biomass, which was higher on the protected area (415 plants/ha, 8788 kg/ha) relative to the grazed area (155 plants/ha, 7085 kg/ha), although mortality was equally low ( 0.06%). In 2006, 42 years after an herbicide application reset mesquite cover to 10% on both areas, aboveground mesquite mass was comparable on both areas ( 4700 kg/ha), but cover and density on the protected area (22%, 960 plants/ha) exceeded that on the grazed area (15%, 433 plants/ha). Mesquite mass in 2006 was substantially below 1948 levels, so continued accrual is likely. That shrub recovery from herbicides on a biomass basis was much less than recovery on a cover basis suggests that remotely sensed biomass estimates should integrate land management history. Contrary to widely held assumptions, protection from livestock since 1932 not only failed to deter woody-plant proliferation, but actually promoted it relative to grazed areas. Results suggest (1) that thresholds for grassland resistance to shrub encroachment had been crossed by the 1930s, and (2) fire management rather than grazing management may be key to maintaining grassland physiognomy in this bioclimatic region.


Assuntos
Criação de Animais Domésticos , Bovinos/fisiologia , Clima Desértico , Ecossistema , Prosopis/fisiologia , Animais , Arizona , Monitoramento Ambiental , Densidade Demográfica , Chuva , Fatores de Tempo
9.
Ecol Appl ; 18(4): 928-44, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18536253

RESUMO

Woody plant abundance is widely recognized to have increased in savannas and grasslands worldwide. The lack of information on the rates, dynamics, and extent of increases in shrub abundance is a major source of uncertainty in assessing how this vegetation change has influenced biogeochemical cycles. Projecting future consequences of woody cover change on ecosystem function will require knowledge of where shrub cover in present-day stands lies relative to the realizable maximum for a given soil type within a bioclimatic region. We used time-series aerial photography (1936, 1966, and 1996) and field studies to quantify cover and biomass of velvet mesquite (Prosopis velutina Woot.) following its proliferation in a semidesert grassland of Arizona. Mapping of individual shrubs indicated an encroachment phase characterized by high rates of bare patch colonization. Upon entering a stabilization phase, shrub cover increases associated with recruitment and canopy expansion were largely offset by contractions in canopy area of other shrub patches. Instances of shrub disappearance coincided with a period of below-average rainfall (1936-1966). Overall, shrub cover (mean +/- SE) on sandy uplands with few and widely scattered shrubs in 1902 was dynamically stable over the 1936-1996 period averaging approximately 35% +/- 5%. Shrub cover on clayey uplands in 1936 was 17% +/- 2% but subsequently increased twofold to levels comparable to those on sandy uplands by 1966 (36% +/- 7%). Cover on both soils then decreased slightly between 1966 and 1996 to 28% +/- 3%. Thus, soil properties influenced the rate at which landscapes reached a dynamic equilibrium, but not the apparent endpoint. Although sandy and clayey landscapes appear to have stabilized at comparable levels of cover, shrub biomass was 1.4 times greater on clayey soils. Declines in shrub cover between 1966 and 1996 were accompanied by a shift to smaller patch sizes on both sandy and clayey landscapes. Dynamics observed during the stabilization phase suggest that density-dependent regulation may be in play. If woody cover has transitioned from directional increases to a dynamic equilibrium, biomass projections will require monitoring and modeling patch dynamics and stand structure rather than simply changes in total cover.


Assuntos
Ecossistema , Prosopis/crescimento & desenvolvimento , Chuva , Solo , Arizona , Fotografação , Estações do Ano
10.
Oecologia ; 144(2): 206-13, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15800735

RESUMO

Food availability is an important factor in the life histories of organisms because it is often limiting and thus can affect growth, mass change, reproduction, and behaviors such as thermoregulation, locomotion, and mating. Experimental studies in natural settings allow researchers to examine the effects of food on these parameters while animals are free to behave naturally. The wide variation among organisms in energy demands and among environmental food resources suggest that responses to changes in food availability may vary among organisms. Since most supplemental feeding field experiments have been conducted on species with high energy demands, we conducted a supplemental feeding study on free-ranging, female Western diamond-backed rattlesnakes (Crotalus atrox), a species with low energy demands and infrequent reproductive investment. Snakes were offered thawed rodents 1-4 times per week. Over two active seasons, we collected data on surface activity, home range size, growth, mass change, and reproduction of supplementally fed and control snakes. Fed and control snakes did not differ in surface activity levels (proportion of time encountered above versus below ground) or home range size. Fed snakes grew and gained mass faster, and had a dramatically higher occurrence of reproduction than control snakes. Also, fed snakes were in better body condition following reproduction than snakes that were not fed. However, litter characteristics such as offspring number and size were not increased by feeding, suggesting that these characteristics may be fixed. These data experimentally demonstrate that food availability can directly impact some life history traits (i.e., growth and reproduction for C. atrox), but not others (i.e., surface activity and home range size for C. atrox). The relationship between food availability and life history traits is affected in a complex way by ecological traits and physiological constraints, and thus interspecific variation in this relationship is likely to be high.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Crotalus/crescimento & desenvolvimento , Crotalus/fisiologia , Ingestão de Alimentos/fisiologia , Atividade Motora/fisiologia , Reprodução/fisiologia , Análise de Variância , Animais , Arizona , Constituição Corporal , Peso Corporal , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA